
An Introduction to
Tao Language

(draft)

LI-MIN FU

Italy, 2005

i

Copyright c©2005, Fu Limin. All right reserved.

This document can be copied or redistributed freely only in

electronic formats.

Citations to this document should include a web link where
this document can be downloaded.

Preface

What is Tao Language?

Tao is an object-oriented scripting language with dynamic-typing vari-
ables supporting complex data structures. It has powerful text processing
ability such as string regular expression matching. It provides built-in nu-
merical data types such as complex number and multi-dimensional numeric
array, and their corresponding operations and computations are very conve-
nient in Tao. It can be easily extended with C++, through a simple and
transparent interface.

How it came out?

I started to designed and implemented Tao Language from the beginning
of May 2004. Before that time, I spent a few weeks studying Gene Ontol-
ogy (GO), and wrote a small graphical software to display Directed Acyclic
Graph (DAG) of GO. Then I found it would not be convenient to do costu-
mized computation based on GO DAG with my graphical software, because
the software must be rebuilt each time there would be any changes in the
computation method, which can happen frequently when the method is not
stabilized. What’s more, it’s not trivial to make a convenient interface for
a complicated computational task. So I realized the goodness of scripting
languages, and spent about two weeks to write some Perl scripts to retrieve
information from GO and construct the DAG. But that experience with Perl
was not very nice, because of its complicated syntax.

Then I started to think about the possiblity to design a new language
with simple syntax, and formed some basic ideas. I searched through Google
trying to find something about how to write an interpreter, but there were
few things which were practically useful for me. But I started write some
lines of codes anyway to give it a try just for curiosity to see if those ideas
would work. Within two weeks, after two times rewriting (almost completely)
the codes, it started to work well for simple arithmetic calculation, and it
was even much fast than Perl for such calculation (unfortunately, when the
interpreter becomes more complicated, its efficiency drops down, but it is
still comparable with Perl; but if Tao numeric types are properly used, it can
be much faster than Perl). I was encouraged by it very much, and decided
to go ahead, and spent many evenings and weekends to improve it. Now it
becomes what you will see in this document.

About the name and log?

Tao comes from a Chinese word, it is the same ”Tao” in Chinese philoso-
phy and religion Taoism. Its basic meaning is ”path, way”, but it also means
the ultimate principle of the universe in Chinese culture and philosophy. It’s
believed that such principle must show extreme simplicity. And simplicity is
what this language and its interpreter intended to have.

The log was also designed by myself using GIMP software in Linux. It
includes three layers, the upper layer is in the center, resembling ’T’. The
middle layer is a circle with a tail, resembling ’a’. And the bottom layer is
a ”Taiji” pattern which connects this Tao to that ”Tao” in Chinese culture.
With its central part covered, it forms an ’o’.

Contents

1 Introduction 1

2 Basic Tao Data Types 2

2.1 String . 3

2.2 Array . 5

2.3 Hash . 9

2.4 Numeric Types . 10

3 Basic Tao Operaters 11

4 Logic and Loop Controls 14

5 File IO 16

6 String Regular Expressions in Tao 18

6.1 Simple Word Matching . 20

6.2 Matching Character Classes 20

6.3 Repeat Matching . 21

6.4 Embedding Expressions in Regular Expression 22

6.5 Matching with Alternate and Groups 22

v

6.6 String Splitting and Replacing 24

7 Numeric Computation in Tao 26

7.1 Complex Number . 26

7.2 Numeric Array . 26

7.3 Operators for Numeric Array 28

7.4 Subindexing of Numeric Array 30

7.5 Setting Precision for Numeric Array 31

7.6 Basic Functions for Numeric Array 31

7.7 Basic Mathematical Functions 36

8 Transient Varibles and ”Magic” Functions 37

9 Tao Routines 40

10 Object-Oriented Programming in Tao 43

11 Namespacing & Importing Modules 46

11.1 Namespacing in Tao . 46

11.2 Importing of Tao Modules . 47

11.3 Dynamic Creation Of Tao Routines and Classes 47

12 Extending Tao with C++ 50

13 Miscellaneous Issues and Functions 55

13.1 Other Built-in Functions . 55

Chapter 1

Introduction

Tao is a language with very simple syntax compared with other scripting
languages such as Perl, Python, while still very expressive. It provides some
commonly used data structure such as list/array, hash/dictionary, which can
be manipulated in a very straightforward way.

Text processing, as an indispensable feature of a scripting language, is
well supported in Tao. Like Perl, Tao has direct syntax support for string
regular expression patterns, which are similar to that in Perl with a few
changes.

Unlike those popularly used scripting languages, Tao has built-in numer-
ical data types such as complex number and multi-dimensional numeric array.
And their corresponding operations and computations are very convenient in
Tao.

It can be easily extended with C++, through a simple and transparent
interface.

To run Tao script, in command console do,

[linux]$./tao source.tao

[windows]$ tao.exe source.tao

Here it is supposed that the executable is named as tao (or tao.exe) and
is put in the save directory of source.tao.

Chapter 2

Basic Tao Data Types

All Tao variables are internally represented as references to objects. So Tao
variables don’t have fixed types, which can be changed during running time.
In any time point, an Tao variable can be a number, a string, an object,
a hash, an array of any type, a numeric array, a routine or a namespace -
almost anything in Tao.

By default, most operations such as assignment, appending, inserting
and erasing array elements are done based references with apropriate deref-
erencing.

Variable names can be specified with keyword const, local, extern or
share. A const-specified variable is a constant, normally its value can not be
changed. But, in special case, its value is allowed the change. The simplest
case is, using keyword const again to re-initialize its value.

const it="old";

it="new"; # Wrong. A warning will arise.

No assignment will be done. "it" is still "old".

const it="new"; # Right. Now "it" is "new".

local can be used to ”localize” a variable, which has no effect to the
outside of its scope which is valid only until the next unpaired ”}”.

a=100;

{

CHAPTER 2. BASIC TAO DATA TYPES 3

local a="local";

}

print(a); # It prints "100", instead of "local".

extern is used to specify an external variable, which should be available
at compiling time from the input namespace. The keyword share in Tao is
very much like common in Fortran77 (If I remember correctly). Two or
more variables, declared in different places (connected by namespace during
compiling) with the same name and specified with share, refer to the same
data. See chapter 11.

In the above examples, # means starting a comment until the end of a
line. To comment multiple lines, use <<< and >>> pair. Note that <<<
and >>> are interperated as the starting and ending of comment only if
they are put in the beginning of a line.

In Tao, variables are declared directly by assignment,

a = 100;

b = "A string";

c = { a, b }; # A list

2.1 String

In Tao, the operations of string is very convenient and almost all of them
are done by operators with subindexing. In addition to the normal subindex,
string can have subindex in form of string[from : to], depending its context,
it can either return a substring of characters with indices from index from
to index to, or change the characters between these two indices.

a = "0123456789";

get substring by subindexing:

b = a[1:5];

b="12345";

conversions by arithmetic operations:

c = 0 + a[8:9];

CHAPTER 2. BASIC TAO DATA TYPES 4

c=89;

d = "" + 12 + 34;

d="1234";

comparison:

e = d < a;

insert, replace and erase by assignment:

replace:

a[2:5] = "abcdefgh";

a="01abcdefgh6789"

insert, if the second index is smaller than the first.

insert before the first index:

a[4:3] = "INSERT";

a="01abINSERTcdefgh6789"

erase:

a[5:10]="";

a="01abIdefgh6789";

length:

print(a.#, "\n");

print: 14

There are three built-in functions related to string operations including num-
ber(), pack() and unpack():

number(string/array, base): convert string(s) to number(s). The
first parameter must be a string or an array of strings, and the second is the
base by which the strings are interpreted. The default base is 10.

a = { ".1", "a" };

print(number(a,16),"\n");

print: { 0.0625, 10 }

pack(number/array): convert number(s) to character(s) which are
packed as a string. The first parameter must be a number or an array of
numbers.

CHAPTER 2. BASIC TAO DATA TYPES 5

a = pack(55); # a="2".

b = pack({77,78,88,66,67,55}); # b="MNXBC7".

unpack(string): unpack a string to characters and convert them to
numbers.

a = unpack("adfAfga");

a={ 97, 100, 102, 65, 102, 103, 97 }

2.2 Array

An array is a list of objects. It should be noted that the index of Tao arrays
starts from 0 to the array size minus 1, like in C/C++.

Creation of Array

In Tao, there is several different way to create an array. The simplest is
by enumeration,

array = { 1, 2, 3, 4 };

It can also be created by specifying a range,

array = { 1 : 1: 4 };

The syntax for this is,

array = { init_value : incremental_value : element_number };

This is also true for array of strings or complex numbers. For example,

array = { "A" : "BC" : 4 };

will give a string ”ABCBCBC”.

An array can also hold objects of different types,

CHAPTER 2. BASIC TAO DATA TYPES 6

array = { 1, "second", 3 };

In Tao, arrays can be created in another convenient way, like

array = {10} : "apple";

this will create an array with 10 ”apple”s. The syntax for this is,

array = { size_specifier } : initialization_element;

In this way, one can put multiple (arbitrary number of) size specifiers to
create multi-dimensional arrays,

array = {5}{10} : "apple";

this gives an array of 5 elements, each of these elements is an array of 10
”apple”s.

Array Size

The size of array can be got by using right operator .#

apples = {10} : "apple";

print(apples.#); # print 10.

Array Methods

Two methods insert() and erase() are provided to modify an array.
Other array operations can be done by flexible subindexing.

insert() takes two parameters, the first is the object to be inserted, the
second is the index where it will be insert. The default value for the second
parameter is the size of the array. So array.insert(e) will simply append e
to array.

erase() also takes two parameters, the first is the starting index and the
second is the ending index of the elements to be erased. The default value

CHAPTER 2. BASIC TAO DATA TYPES 7

for the first is 0, for the second is the array size minus 1. array.erase() will
simply erase all elements in array.

Another method flat(array) is provided to get a flated array of array.
The elements and their order in the flated array are the result of the following
process, consider the array as a tree where arrays are nodes and any other
type of objects are leaves, then a deep-first traversal is performed on the
tree and the leaves are inserted into the flated array when they are visited.
This method is useful in the conversion between normal arrays and numeric
arrays.

array = {"one",{"two",10,{1,2},"three"},[1,2]};

flated = array.flat();

flated={"one","two",10,1,2,"three",[1,2]}

Array Subindexing

Array operations other than insert and erase can be done by flexible
subindexing:

array10 = {10} : "apple";

index = [1, 3, 5, 7, 9]; # numeric vector

sub arrays of "array10":

array5A = array10[0 : 5]; # get the first 5 apples.

array5B = array10[index]; # get apples with odd index.

assignment:

array10[9] = "kiwi";

replace the last apple with kiwi.

array10[0 : 5] = "orange";

replace the first 5 with oranges.

array10[index] = "peach";

replace the odd index apples with peach.

in the above example, subindex [id1 : id2] indicates all indices from index
id1 to id2. If id1 is not specified, 0 is used; and if id2 is not specified, the
last index in the array is used.

CHAPTER 2. BASIC TAO DATA TYPES 8

Sort Array

The sorting of array is very simple, just do like this,

a = { 4, 3, 5, 2, 6, 1 };

sort(a, @1<@2);

@1,@2 indicate two successive elements in the array.

@1<@2 means to sort the array ascendantly.

a={1,2,3,4,5,6}

a = { 4, 3, 5, 2, 6, 1 };

sort(a, @1<@2, 3);

The last parameter 3 indicate to sort until the

largest 3 elements are properly sorted.

a={2,3,1,4,5,6}

a = { 4, 3, 5, 2, 6, 1 };

b = sort(a[2:], @1<@2);

Sort from the third element and return a new array.

b={1,2,5,6}

array = {{3,"A"},{4,"M"},{2,"E"},{6,"K"},{2,"C"},{5,"H"}};

"array" is an array of array which contain a number

and a string. We can sort it by the numbers or by

by the strings.

Sort by the numbers:

sort(array, @1[0]>@2[0]);

array={{6,"K"},{5,"H"},{4,"M"},{3,"A"},{2,"E"},{2,"C"}}

Sort by the strings:

sort(array, @1[1]<@2[1]);

array={{3,"A"},{2,"C"},{2,"E"},{5,"H"},{6,"K"},{4,"M"}}

sort(array, exprs, m): sort array by exprs. The heapsort algorithm is
used. The sorting is in place, during sorting, the sorted elements are stored
in the last part of the array. If m is present, sort array until the last m
elements are replaced with sorted values. exprs must contain two transient
variables @1 and @2 (See Chapter 8 for transient variables), during sorting,
two elements are passed to @1, @2, and the comparison is done by exprs.

CHAPTER 2. BASIC TAO DATA TYPES 9

2.3 Hash

Hash is a set of key/value pairs. Usually its elements are accessed by the
keys.

Hash can also be created by enumeration,

hash = { key1 : value1, key2 : value2 ... };

here the keys must be strings, while values can be anything. If key1 happened
to be an array of strings and in the same time value1 happened to be an
array, each element from key1 and the element from value1 with the same
index will form a key/value pair which is inserted into the hash. If these
two arrays are of different size, the extra elements are ignored.

The assignment hash[key] = value will insert a pair of key/value into
the hash, if this key is not presented in the hash; otherwise, the value cor-
responding to key is replaced with value. So one can also create a hash in
this way,

hash = { : }; # empty hash.

hash[key1] = value1; # insert key1/value1 pair

hash[key2] = value2; # insert key2/value2 pair

The keys of a hash can be extracted by right operator .%, and the values
can be extracted by right operator .@. A hash can also have paired subindices
specifying a range of keys. For example, hash[key1 : key2] specifies a sub-
hash with key starting from key1 and ending at key2, if key1 is not presented
in the hash, the starting key is the smallest key larger than key1; if key2 is
not presented in the hash, the ending key is the largest key smaller than
key2.

Examples:

nv = { 1, 2, 3 };

hash1 = { "A":1, "C":"name", "B":nv };

hash2={:};

hash2["a"]=nv;

CHAPTER 2. BASIC TAO DATA TYPES 10

hash2["b"]=hash1;

Array of hashes:

hash3 = {10} : {:};

hash3[0]["a"]=nv;

Get keys:

keys=hash1.%;

Get values:

values=hash2.@;

keys = {"AA","BB","cc","DD"};

values = {11,22,33,44,55};

hash = { keys : values };

print(hash, "\n");

print: { "AA"=>11, "BB"=>22, "DD"=>44, "cc"=>33 }

print(hash["AA":"D"], "\n");

print: { "AA"=>11, "BB"=>22 }

print(hash["B":], "\n");

print: { "BB"=>22, "DD"=>44, "cc"=>33 }

2.4 Numeric Types

To support powerful numeric computation, Tao provides built-in numeric
types such as complex number and multi-dimensional numeric array. See
Chapter 7.

Chapter 3

Basic Tao Operaters

Tao Language supports a set of abundant operators to facilitate the writing
of more expressive scripts. Many of these operators are versatile and can be
used for different data types.

Arithmetic:

+ addition
− substraction
∗ multiplication
/ division
% mod
∧ power
++ prefix and postfix increment (are the same in Tao)
−− prefix and postfix decrement (are the same in Tao)

Numeric and String Comparison:

== equal
! = not equal
< less than
> greater than
<= less than or equal
>= greater than of equal

Boolean Logic:

CHAPTER 3. BASIC TAO OPERATERS 12

&& and
|| or
! not

Assignment and Composite Assignment:

Assignment: =, := + =, − =, ∗ =, / =, ∗ =, % =, ∧ =, & =, | =

=, := are for all data type, and = can only be used in a stand alone
assignment statement; to do assignment within another expression one must
use := instead of =. This is to avoid the confusion between = and ==, each
of which can happen to be a typo of another inducing a bug. The others
are mainly for numeric data types (numbers, numeric arrays), but + = can
also be used for string.

Regular Expression Matching and Splitting:

=∼ pattern matching, usage: str =∼ /expr/
it returns boolean result in boolean or arithmetic expressions,
such as in if(str =∼ /expr/);
it returns the matched substring (if there is) in assignment,
such as in var = (str =∼ /expr/).

! ∼ pattern NOT matching, usage str! ∼ /expr/
it returns boolean result in boolean or arithmetic expressions,
such as in if(str! ∼ /expr/);
it returns the unmatched substring (if there is) in assignment,
such as in var = (str! ∼ /expr/).

∼∼ only used in var = str ∼∼ /expr/,
extracts sub-strings matching or NOT matching expr;

See Chapter 6 for more details.

Right Operators:

.# get string length or array size

.@ get hash values

.% get hash keys

.? get variable information

Numerical Operators:

See Chapter 7.

CHAPTER 3. BASIC TAO OPERATERS 13

Miscellaneous:

+ string concatenation
. function call by an object
=? binary type comparison operator,

check if two operands have the same type
!? binary type comparison operator,

check if two operands have different type
e0?e1 : e2 if evaluation of e0 gives TRUE,

e1 is evaluated and returned,
otherwise, e2 is evaluated and returned.

Chapter 4

Logic and Loop Controls

Currently on if, else if, else, while, for, foreach, break and skip are
implemented.

If Else Controls

syntax:

if(expr1){

block1;

}else if(expr2){

block2;

}else{

block3;

}

If expr1 is true, block1 is executed; otherwise, if expr2 is true, block2 is
executed; otherwise, block3 is executed;

While Control

syntax:

while(expr){

block;

}

If expr is true, block is executed and repeated until expr becomes false.

CHAPTER 4. LOGIC AND LOOP CONTROLS 15

For Control

syntax:

for(init; condition; step){

block;

}

The execution sequence of for statement is init → condition → block →
step → condition → block → step → ..., if condition is always true. Once
condition become false, the loop is exited.

Foreach Control

syntax:

foreach(array:element){

block;

}

For each element in array, block is executed.

Other Controls

break can be used to exit a loop, and skip can be used to skip the
rest part of script and start the next cycle of a loop. skip is equivalent to
continue.

Chapter 5

File IO

So far Tao only supports basic handling of files and IO. It can only perform a
few simple standard IO operations such as read from and write to STD and
files. In Tao, a file IO stream is a constant object created as a return value
of function ”open()”. The first parameter of ”open()” is the file path and
name, the second is the attribute of the stream - so far only two is supported,
”w” for write only stream and ”r” for read only stream.

Two functions for IO are provided, ”print()” and ”read()”. ”read()”
reads a whole line with the new line symbol choped. See comments in the
following sample.

Open a file for writing:

fout=open("test1.txt","w");

Write to the file:

fout.print("log(10)=",log(10));

Open a file for reading:

fin=open("test2.txt","r");

Read from the file:

line=fin.read();

fin.read(line);

while reading succeeds:

while(fin.read(line)){

Write to std out:

CHAPTER 5. FILE IO 17

print(line,"\n");

}

Read from std in:

d=read();

print(d,"\n");

Chapter 6

String Regular Expressions in
Tao

In Tao language the only thing similar to Perl is the string regular expres-
sions (Regex). Like Perl, Tao also has direct syntax support for regular
expressions, and provides convenient Regex matching functionalities.

A regular expression is a string representing a pattern (rules), from which
a set of strings can be constructed. The pattern represented by a regular ex-
pression is used to search in a string for sub-strings, which can be constructed
from that pattern, namely sub-strings that match that pattern. A number of
operations can be performed on the resulting sub-strings, including extrac-
tion, replacing and splitting etc.

There are three basic operator for regular expression matching: =∼,
! ∼ and ∼∼. In this chapter, for convenience, when regular expression
or Regex is used, it can mean the representation string itself or this string
together with the matching operators. It should be easy to infer which one
it actully means.

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 19

Regex operoters

=∼ pattern matching, usage: str =∼ /expr/
it returns boolean result in boolean or arithmetic expressions,
such as in if(str =∼ /expr/);
it returns the matched substring (if there is) in assignment,
such as in var = (str =∼ /expr/).

! ∼ pattern NOT matching, usage str! ∼ /expr/
it returns boolean result in boolean or arithmetic expressions,
such as in if(str! ∼ /expr/);
it returns the unmatched substring (if there is) in assignment,
such as in var = (str! ∼ /expr/).

∼∼ only used in var = str ∼∼ /expr/,
extracts sub-strings matching or NOT matching expr;

In all these case, the Tao interpreter first tries to find a matched sub-
string. If found, in boolean and arithmetic expression, =∼ will return true,
while ! ∼ will return false. But in assignment, =∼ will return the matched
substring, whereas ! ∼ will return the substring located between the previ-
ously matched substring (or the begin of the string) and the current mached
substring (or the end of the string); while ∼∼ will return the matched and
unmatch substring alternately. See section 6.6

a = "This is a string for the string regex example.";

if(a=~/string/){

print("matched\n");

}

while(a=~/string/){

print("matched\n"); # print twice

}

b = a !~ /string/;

print(b,"\n");

print: This is a

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 20

6.1 Simple Word Matching

The simplest regular expression is a string not containing metacharacters
such as

{}[]() ∧ @. ∗ +?\

which are reserved for special usage. However they can be used together with
’\’ such as ”\\” to match ”\”, ”\{” to match ”{” and ”\@” to match ”@”
etc.

Examples:

/word/: to match any string containing ”word”
/word\ /: to match any string containing ”word ”

6.2 Matching Character Classes

A character class is a set of possible characters that match a single character
in a particular position. Usually, a character class is represented by brakets
[...] containing the possible characters. If there is ∧ after [, it means matching
characters which are not in this class.

Example:

/[tT]ao/: to match strings containing ”tao” or ”Tao”
/[∧ABC]/: to match any strings not containing ”A”, ”B” or ”C”

One may also use a range of characters described by a starting character,
a range operator − and a ending character.

Examples:

/x[0-9]/: to match ”x0”, or ”x1”, ..., or ”x9”
/[a-z]0/: to match ”a0”, or ”b0”, ..., or ”z0”

One may also use abbrievations such as,

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 21

\d digits: [0-9]
\s whitespaces: [\ \t\n]
\c lower case letters: [a-z]
\w word characters: [0-9a-zA-Z]

\D negative to \d: [∧0 − 9]
\S negative to \s: [∧\s]
\C upper case letters: [A-Z]
\W negative to \w: [∧\w]

Examples:

a = "ABC123abcDEF456GHI";

b = a=~/[0-3\cA-C]+/;

b="ABC123abc";

c = a=~/[^0-3\cA-C]+/;

c="DEF456GHI";

d = a=~/\D+/;

d="ABC";

6.3 Repeat Matching

Quantifier metacharacters can be used to specify how many times a portion
of a regular expression must be matched.

e? match e 0 or times
e∗ match e any number of times
e+ match e at least once
e{m} match e exactly m times
e{m, } match e at least m times
e{m, n} match e at least m times and at most n times

a = "abc12defg3345ga4ga";

b = repeat(a=~/\c+\d\d?\c*/)); # see section 6.6

b={ "abc12defg", "ga4ga", "da3" };

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 22

a = "12ab1234ab123456ab";

b = a=~/\d{2}/;

c = a=~/\d{3,5}/;

d = a=~/\d{5,}/;

b="12", c="1234", d="123456"

6.4 Embedding Expressions in Regular Ex-

pression

Sometimes it would be necessary match a string to the results of another
expression, this can be done by embedding that expressions in a regular
expression by inserting @{exprs}. For example,

a = "This is a string for the example.";

c = "string";

d = a =~ /@{c+" for"}/;

print(d, "\n");

print: string for

e = a =~ /@{ "is a " + (d := (a =~ /@{c+" for"}/)) }/;

print(e, "\n");

print: is a string for

6.5 Matching with Alternate and Groups

In the previous sections, only one possiblity is allowed to match in one po-
sition, but this is not adequate in some situation. Then how do we provide
alternates in one position, the solution is to create a Regex grouping, and
put the alternates in the grouping and separate them by |.

a = "black cat 0001";

b = "white dog 0002";

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 23

c = a=~/(cat|dog)/; # c="cat"

d = b=~/(cat|dog)/; # d="dog"

e = "black bat 0003";

f = a=~/((b|c)at|dog)\ \d+/; # f="cat 0001"

g = b=~/((b|c)at|dog)\ \d+/; # g="dog 0002"

h = e=~/((b|c)at|dog)\ \d+/; # h="bat 0003"

Like in Perl, Regex grouping can also be used to extract parts of the matched
substring. For each grouping, the matched substring can be extracted and
stored in a special variable − transient variable (See Chapter 8) as called
in Tao. Unlike in Perl, where the extraction is done automatically for all
groupings, and one must explicitly prevent them if they are to be avoided,
in Tao, the matched substring for grouping is extract only if the transient
variable is explicitly specified by format /(@var : regex)/.

a = "====this is a string for the example======";

b = a=~/(@1:\w|\s)*(@2:string)(@3:\w|\s)*/;

b="this is a string for the example";

@1="this is a ";

@2="string";

@3=" for the example";

However, the Tao transient varibales are valid only in one statement, as a
result, one can’t use @1, @2, @3 directly in its following statestment. So
one must assign @1, @2, @3 to other variables in the same statement of the
Regex. This can be done by appending an arithmetical expression in the end
of Regex as /regex/arith exprs/, where arith exprs will be evaluated after
the Regex matching is performed.

b = a=~/(@1:\w|\s)*(@2:string)(@3:\w|\s)*/d:={@1,@2,@3}/;

print(b,"\n");

print: this is a string for the example

print(d,"\n");

print: { "this is a ", "string", " for the example" }

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 24

By embedding arithmetical expression of such transient variables, strings
with repeated patterns can be easily matched. For example, /(@1 : \c+)@{@1}/
can be used to match ”mama”, ”papa”, or ”coco” etc.

6.6 String Splitting and Replacing

In Tao there is no special functions for string splitting and replacing by
Regex, instead, a combination of a generic function and the Regex operators
can do the work well. That generic function is repeat(exprs), which repeats
evaluating exprs as long as certain condition is satisfied and return all the
results of exprs as an array. The condition for repeating varies for difference
type of expression (See Chapter8). For a regular expression the condition is
the success of finding a substring which satisfies that regular expression.

string = "ABC123DEF456GHI";

Extract substrings of digits:

sv1 = repeat(string=~/\d+/);

Split the string with digits as the separator:

sv2 = repeat(string!~/\d+/);

Extract all substrings of digits and non-digits:

sv3 = repeat(string~~/\d+/);

print(sv1, "\n", sv2, "\n", sv3, "\n");

print:

{ "123", "456" }

{ "ABC", "DEF", "GHI" }

{ "ABC", "123", "DEF", "456", "GHI" }

If a Regex operator modifier ”s: is put after the operator, and an arithmetical
expression is appended in the end of Regex as /regex/arith exprs/, the
matched (for =∼) or the un-matched (for ! ∼) substring is replaced with the
result of arith exprs, which must return a string as its result.

a = "There is a cat";

b = a=~s/cat/"dog"/;

CHAPTER 6. STRING REGULAR EXPRESSIONS IN TAO 25

print(b, "\n", a, "\n");

print:

cat

There is a dog

repeat() can also used to replace all satisfied substrings,

a = "ABC123DEF456GHI";

b = repeat(a=~s/(@1:\d+)/""+(1000+@1)/);

b={ "123", "456" };

a="ABC1123DEF1456GHI";

For convenience, another modifier ”gs” is provided to do the same work
without using repeat(),

a = "ABC123DEF456GHI";

a =~gs/(@1:\d+)/""+(1000+@1)/;

a="ABC1123DEF1456GHI";

Another example to finish this chapter,

a="12123421631934563216641994521534";

b = repeat(a=~/ (@1: \d+) @{ @1=~gs/6/9/ } /);

b={ "1212", "163193", "16641994" }

In this example /(@1 : \d+)@@1 = gs/6/9/ will match digits in which, the
last half is the same as the first half if there is no ’6’ in the first half; if there
is ’6’(s) in the first half, the last half should have ’9’(s) in the corresponding
place of ’6’(s). eg: 1212, 163193, 16641994.

Chapter 7

Numeric Computation in Tao

To support powerful numeric computation, Tao provides built-in numeric
types such as complex number and multi-dimensional numeric array.

7.1 Complex Number

The imaginary part of a complex number is represented by symbol $.

a = 1+$; # a=1+i;

asic complex arithmetic calculations such as addition (using operator ”+”),
substraction (”-”), division (”/”) and multiplication (”*”) are also supported.

7.2 Numeric Array

Numeric arrays can be created in the same way as normal array, using []
where { } are used.

Numeric vectors, single row matrices, by enumeration:

a = [1, 2, 3, 4];

By specifying a range:

CHAPTER 7. NUMERIC COMPUTATION IN TAO 27

b = [1 : 2 : 10];

Complex vector:

c = [$, 2, 3+4$];

Enumerate 2 x 3 matrix:

d = [1, 2, 3; 4, 5, 6];

In numeric vector enumerations, if an element in the enumeration is a nu-
meric array, the elements of this array will be inserted into the new numeric
vector; if an element in the enumeration is a normal array, its elements are
inserted to the numeric vector with appropriate conversion, in fact, this array
is expanded in the enumeration.

a = [2][2] : 1;

b = [10, a]; # b=[10, 1, 1, 1, 1]

c = { 1, [2 , 3], a };

d = [100, c];

equivalent to expand "c" in the enumeration, i.e.

d=[100,1,[2,3],a];

so d=[100,1,2,3,10,1,1,1,1].

Numeric arrays can also be created with syntax:

numarray = [N1][N2] ... [Nk] : init_element;

here init element can be a scalar or another numeric array. And numarray
will be a N1 × N2 × ... × Nk dimensional array with all element to be
init element.

array1 = [4] : 0; # array1=[0,0,0,0].

array1 = [1, 2, 3, 4];

array2 = [3] : array1; # 3x4 array.

array3 = [2] : array2; # 2x3x4 array

print(array2);

it will print:

CHAPTER 7. NUMERIC COMPUTATION IN TAO 28

row(0,:): 1 2 3 4

row(1,:): 1 2 3 4

row(2,:): 1 2 3 4

print(array3);

it will print:

row(0,0,:): 1 2 3 4

row(0,1,:): 1 2 3 4

row(0,2,:): 1 2 3 4

row(1,0,:): 1 2 3 4

row(1,1,:): 1 2 3 4

row(1,2,:): 1 2 3 4

The structure of Tao numeric array is such: a matrix of N1×N2 is composed
of N1 row vectors of size N2; an array of N1×N2×N3 is composed of N1
matrices of size N2 × N3, and so on.

Some people may not used to this kind of multi-dimensional numeric
array creation, for them, there is another option, that is the using of Tao
internal function numarray() to create numeric array on fly. See Section 7.6.

7.3 Operators for Numeric Array

left operand right operand suported operator

scalar array +,−, ∗
array scalar +,−, ∗, /

=, + =,− =, ∗ =, / =
only for:
real array real number %,∧, &&, ||
real array real number % =,∧ =, & =, | =
array array +,−, ∗, + =,− =, < ∗ >, < / >

+ =,− =, ∗ =, / = pairwise
only for:
real array real array % =,∧ =, & =, | = pairwise

unary operations
array ++,−−

array ++,−−,′ (transpose)

Note: < ∗ >, < / > are pairwise element operators.

CHAPTER 7. NUMERIC COMPUTATION IN TAO 29

Examples:

a = [1, 2, 3] + 10;

print(a, "\n");

print:

[11, 12, 13]

b = [3, 2, 1] * [1, 2, 3; 4, 5, 6; 7, 8, 9];

print(b, "\n");

print:

[18, 24, 30]

b *= 2;

b += [10, 20, 30];

print(b, "\n");

print:

[46, 68, 90]

a = [2][5] : 1;

b = [2][3] : 2;

a[:,2:4] += b;

print(a, "\n");

print:

row(0,:): 1 1 3 3 3

row(1,:): 1 1 3 3 3

b++;

print(b, "\n");

print:

[47, 69, 91]

c = a <*> b;

print(c, "\n");

print:

[517, 828, 1183]

print(b’, "\n");

print:

[47, 69, 91 (T)]

(T) in the end means this is a column vector.

CHAPTER 7. NUMERIC COMPUTATION IN TAO 30

c = [1, 2, 3; 4, 5, 6];

print(c,"\n");

print:

row(0,:): 1 2 3

row(1,:): 4 5 6

print(c’,"\n");

print:

row(0,:): 1 4

row(1,:): 2 5

row(2,:): 3 6

7.4 Subindexing of Numeric Array

The subindexing of a numeric array is different from that of a normal array.
The way of subindexing Tao numeric arrays is very much similar to that
in Matlab. All the indices for each dimension should be put in a single
pair of [] separated by comma. For example, for a N × M matrix mat,
mat[1, 2] indicates the element at the cross between the second row and the
third column (index starts from 0 in Tao). Symbol : can also be used to
specify a range of indices, e.g., mat[1 : 3, 2 : 4] indicates a submatrix of mat
composed of elements at the cross between rows 1, 2, 3 and columns 2, 3, 4.
The default value in the position before : is 0, and the default value in the
after is last index in that dimension, i.e., the size in the dimension minus
1. So mat[: 3, 2 : 4] is equivalent to mat[0 : 3, 2 : 4], and mat[1 :, 2 : 4] is
equivalent to mat[1 : N − 1, 2 : 4]. And if all are omitted in one dimension
indicates taking all the indices in that dimension, i.e. mat[, 2 : 4] is equivalent
to mat[0 : N − 1, 2 : 4].

Examples:

a = [1, 2, 3; 4, 5, 6];

a[:,1] += 10; # add 10 to the second column.

print(a, "\n");

print:

row(0,:): 1 12 3

row(1,:): 4 15 6

CHAPTER 7. NUMERIC COMPUTATION IN TAO 31

a[0,1:] *= 10;

multiply the last two columns in the first row by 10.

print(a, "\n");

print:

row(0,:): 1 120 30

row(1,:): 4 15 6

7.5 Setting Precision for Numeric Array

To improve the computational efficiency and reduce memory usage, Tao pro-
vides users the possibility to set desirable precision for real numeric array.
The default precision for a numeric array is double. For real arrays, their
precision can be set to byte, short, int, float and double in the following
way,

For enumeration and range, put the keyword after [.

a = [byte 1, 2, 3];

b = [short 1 : 1 : 10];

Or, put the keyword before the size specifiers:

c = int [10] : 1;

d = float [5][5] : 10;

e = int [5] : 10.5;

print(e);

print:

[10, 10, 10, 10, 10]

7.6 Basic Functions for Numeric Array

In addition to the flexible subindexing operation, there are some basic func-
tions and methods to manipulate a numeric array. They are functions count(),
max(), min(), sum(), prod(), mean(), stdev(), varn(), permute(),
invpermute(), convolute(), which(), apply(), noapply(), numarray(),
and methods size(), reshape(), resize().

CHAPTER 7. NUMERIC COMPUTATION IN TAO 32

count(array): count the number of elements in array.

max(array): get the maximum value in array.

min(array): get the minimum value in array.

sum(array): get the sum of all elements in array.

prod(array): get the product of all elements in array.

mean(array): get the mean value of all elements in array.

stdev(array): get the standard deviation of all elements in array.

stdev =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2

where {xi}i=1..N
are the elements in array.

varn(array): get the sample variance of all elements in array.

varn =
1

N

N
∑

i=1

(xi − x̄)2

where {xi}i=1..N
are the elements in array.

Note: for all the above functions and the following functions
which(), apply(), noapply(), if array is followed with subindices,
the computation are performed on the specified elements without
creating a sub-array!

For example,

a = [1, 2, 3; 4, 5, 6];

b = mean(a[1,:]);

get the mean value for the second row.

numarray(vector, exprs, type): create a numeric array of type with
dimensions specified by vector and being initialized by exprs. type must be
a string of these: ”byte”, ”short”, ”int”, ”float”, ”double” or complex. And
vector must be a vector specifying the size in each dimension. exprs can
contain transient variables. If exprs and type are omitted, the array will be
created as double with 0s.

CHAPTER 7. NUMERIC COMPUTATION IN TAO 33

Create an array with 2 rows and 4 columns:

a = numarray([2,4]);

print(a,"\n");

print:

row(0,:): 0 0 0 0

row(1,:): 0 0 0 0

++i is evaluated multiply times.

One can see the evaluation order from this example.

i=0;

b = numarray([2,4], ++i);

print(b,"\n");

print:

row(0,:): 1 2 3 4

row(1,:): 5 6 7 8

Here @1 is a transient variable for the first index,

namely row index, and @2 is for the second (i.e. column

index). For each element, its indices are passed to

@1 and @2, and @1+@2+0.5 is evaluated to give a value

to that element.

c = numarray([2,4],@1+@2+0.5,"float");

print(c,"\n");

print:

row(0,:): 0.5 1.5 2.5 3.5

row(1,:): 1.5 2.5 3.5 4.5

which(): to find elements satisfying certain condition. It can be used
in two modes:

1 which(array oper value): where oper must be one of ==, ! =, <, >
, <=, >=, it returns the indices as an array of elements which satisfy
element oper value. For example,

a = [1, 2, 3; 4, 5, 6];

b = which(a<5);

find elements with value less than 5.

print(b);

print:

row(0,:): 0 0

CHAPTER 7. NUMERIC COMPUTATION IN TAO 34

row(1,:): 0 1

row(2,:): 0 2

row(3,:): 1 0

2 which(array, exprs): returns the indices as an array of elements
which make exprs to be true. The passing of the elements and their
indices as parameters to exprs is done with transient variables(see
next chapter for details). As an example,

a = [1, 2, 3; 4, 5, 6];

b = which(a, @0 % 2 ==0);

find elements with even values.

print(b);

print:

row(0,:): 0 1

row(1,:): 1 0

row(2,:): 1 2

Here @0 is a transient variable represent the element values.

apply(array, exprs): for each element of array, evaluate exprs and
update the element with the value of exprs. The passing of the elements and
their indices as parameters to exprs is also done with transient variables.

noapply(array, exprs): identical to apply() except that the elements
are not updated by the values of exprs. The passing of the elements and
their indices as parameters to exprs is also done with transient variables.
For example,

a = [1, 2, 3; 4, 5, 6; 7, 8, 9];

sum = 0;

noapply(a, sum += @0); # another way to calculate sum.

apply(a, @1==@2);

here @1 the transient variable representing the first

index of an element, and @2 is for the second.

assign 1 to an element if its first and second indices

are equal, otherwise assign 0.

this will change "a" to an unit matrix.

CHAPTER 7. NUMERIC COMPUTATION IN TAO 35

print(a);

print:

row(0,:): 1 0 0

row(1,:): 0 1 0

row(2,:): 0 0 1

apply(a[1,1:2], 10*(@1+@2));

a[i,j]=10*(i+j)

for the last two elements in the second row

print(a);

print:

row(0,:): 1 0 0

row(1,:): 0 20 30

row(2,:): 0 0 1

permute(array, vec): permute array, and return a new array. If
array is a N dimensional array, vec must be a vector of permutation of
[1, 2, ..., N]. For example, if N = 3, vec must be [1, 2, 3], [1, 3, 2], [2, 1, 3],
[2, 3, 1], [3, 1, 2] or [3, 2, 1]. If vec = [2, 3, 1], and b = permute(array, vec),
array[i1, i2, i3] = b[i2, i3, i1].

invpermute(array, vec): inverse permute array. It is the re-
verse of permute(), and takes similar parameters. If vec = [2, 3, 1], and
b = invpermute(array, vec), array[i2, i3, i1] = b[i1, i2, i3].

convolute(array, kernel): compute the convolution of array and
kernel, and return a new array. kernel must has the same dimensions as
array and with odd size in each dimension.

array.size(): probably size() should be named as shape, since it return
the dimensions of array, i.e., if array is n1 × n2 × ... array, array.size() will
return [n1, n2, ...].

array.resize(n1,n2,...): resize array to n1 × n2 × ... dimensional array.
Memory is reallocated if neccessary, new allocated elements are initialized to
0. It may also take single vector as parameter.

array.reshape(n1,n2,...): reshape array to n1 × n2 × ... dimensional
array. No memory reallocation, so n1 × n2 × ... must be the number of
elements in array. It may also take single vector as parameter.

CHAPTER 7. NUMERIC COMPUTATION IN TAO 36

7.7 Basic Mathematical Functions

A number of basic mathematical functions are supported in Tao. If a function
takes (if it can) a numeric array as parameter, it will apply the function to
each of the elements and return the results as a new array of the same type
and shape, except for arg() and norm() which, when take a complex array
as parameter, will return a double array of the same shape.

For Real Types Only

The functions for real number or array only includes acos(), asin() and
atan().

For Complex Types Only

The functions for complex number or array only includes arg(), the an-
gular coordinate of a complex in polar coordinates, and norm(), the normal
of a complex.

For Both Real and Complex Types

The functions for both real and complex number or array, includes abs(),
cos(), sin(), tan(), cosh(), sinh(), tanh(), exp(), log() and sqrt(). For
real number abs() gives the absolute value, and for complex number it gives
its radius coordinate in polar coordinates.

For Random Number

srand() set the seed for random number generator, and rand() generate
a random number.

Chapter 8

Transient Varibles and ”Magic”
Functions

Tao language supports another interesting feature called Transient Vari-
ables, which is used for automatical passing of parameters in certain cir-
cumstance to provide maximum convenience and flexibility. For example,
in string regular expression matching, taking the same example from Sec-
tion 6.5,

a = "====this is a string for the example======";

b = a=~/(@1:\w|\s)*(@2:string)(@3:\w|\s)*/d:={@1,@2,@3}/;

print(d,"\n");

print: { "this is a ", "string", " for the example" }

here transient variables are used to pass match substrings to another expres-
sion. In this case, @1, @2, @3 resemble the special variables $1, $2, $3 in Perl
to extract matched substrings. However, unlike in Perl where $1, $2, $3 are
accessable in more than one statement, the Tao transient variables are always
only valid in a single statement.

Except the transient variables used in regex grouping, all other type of
transient variables are used together with certain functions which often take
expressions themselves instead of the results as their parameters. Because of
this, I call them as ”magic” functions. For example, the ”magic” functions
which(), apply() and noapply() for numeric arrays all can take expressions

CHAPTER 8. TRANSIENT VARIBLES AND ”MAGIC”

FUNCTIONS 38

of transient variables. The rules for using transient variables in such functions
is that, @0 always represents the element value of a numeric array, and @1
represents the first subindex of the element, @2 represents the second and so
on, up to 9 subindices. See Section 7.6.

Another two ”magic” functions which also use transient variables is it-
erate() and iterget(). They can take arbitrary number of parameters, but
the first one usually should be either an array or a range of index specified as
id1 : id2. For each element of the array in the first parameter or each index
between id1 and id2, the rest expressions in the parameter list are evaluated.
The only difference between iterate() and iterget() is that, iterate() only
evaluates those expression, while iterget() evaluates them and return an ar-
ray composed of their results (iterget: iterate and get). In those expression
in the parameter list, the element of the array or the index in id1 : id2 can
be accessed by transient variables. These two functions can be nested within
each other. For the outmost one, it uses @1 as its transient variable, and the
first nested iterate() or iterget() uses @2, the second nested uses @3 and
so on. For example,

array1 = { "one", "two" };

iterate(array1, print(@1," : "));

print: one : two :

array2 = { 1, 2, { "AA", "BB" } };

iterate(array1, iterate(array2, print(@1, "\t",@2, "\n")));

print:

one 1

one 2

one { "AA", "BB" }

two 1

two 2

two { "AA", "BB" }

iterate(array2, iterate(@1, print(@2, "\t")), print("\n"));

print:

1

2

AA BB

array2.erase(array2.#-1, array2.#-1);

array2={ 1, 2 }

CHAPTER 8. TRANSIENT VARIBLES AND ”MAGIC”

FUNCTIONS 39

array3 = iterget(array1, iterate(array2, @1, @2));

array3={{{"one",1},{"one",2}},{{"two",1},{"two",2}}}

repeat() is a magic function with no transient variables associated to
itself. It takes an expression (usually a regular pattern matching expression
or a generator expression, see Chapter 9) as its parameter, it repeats evalu-
ating that expression as long as that expression can generate new result, and
return all the results as an array. As you probably have seen in Chapter 6,
repeat() can be used to repeat to match(by =∼, or unmatch by ! ∼) all
substrings or replace all matched or unmatched substrings. It also can be
used to get all rest possible returning values of a generator.

routine generator(){

for(i:=0;i<5;i++){

yield i;

}

}

a = generator();

b = repeat(generator());

b={1,2,3,4}

Chapter 9

Tao Routines

Tao routines are declared with keyword ”routine”,

routine function(a,b){

a=10;

b="test";

return a,b;

}

[r1,r2]=function("AAA",111); // r1=10; r2="test".

r3=function(r1,r2); // r3=[10,"test"].

All parameters are passed in by references.

Since the parameters are type-less, it is not necessary to overload func-
tions as what is done in C++. If the types of parameters have to be checked
so as to run different scripts, type comparison operators =? and !? can be
used, =? checks if the operands in two sides have the same type, and !? checks
if the operands in two sides have different types.

routine ovldfun(a){

if(a =? ""){

print("\"a\" is a string.\n");

}else if(a =? 0){

print("\"a\" is a number.\n");

}else{

CHAPTER 9. TAO ROUTINES 41

print("En, let me guess...\n");

}

}

In Tao, a function is an object, and its name can be used as a variable
(constant variable), which can be assigned to other variables. A variable
pointing to a function can invoke that function by using method ”run(...)”.

routine one(){

print("Printed by ",one,"\n");

}

routine two(){

print("Printed by ",two,"\n");

}

routine three(){

print("Printed by ",three,"\n");

}

alias=ovldfun;

alias.run("1");

alias.run(1);

alias.run();

routs = { one, two, three };

foreach(routs : rout){

rout.run();

}

As you have seen in the first example, return is used to return data
from a routine. When a routine exits by executing return statement or
by reaching to the end of the routine, the state to the routine is reseted
its initial state. In Tao, there is another keyword can be used in the place
of return, that is yield, which yields data from the rouine and exits the
routine. However, a routine exited in this way ”remembers” its state at the
point where it exited, when this routine is called again, it will start from the
statement next to exit point. The state of a routine is never reset as long as
it doesn’t reach a return statement or the end of the routine.

routine generator(){

for(i:=0;i<5;i++){

CHAPTER 9. TAO ROUTINES 42

yield i;

}

}

a = generator();

b = {};

while(i:=generator()){

b.insert(i);

}

or: b = repeat(generator());

b={1,2,3,4}

Chapter 10

Object-Oriented Programming
in Tao

In Tao language, the syntax for object-oriented programming is slightly sim-
ilar to C++. When defining a class in Tao, keywords ”private”, ”protected”
and ”public” can be used to specify the permission to access its member data
and methods(functions) from its sub-classes and outside. Member data and
methods specified with ”private” are absolutely private in the sense that they
cannot be access directly by anything else but itself. But they can be ac-
cessed by its sub-classes through protected or public methods, or by outside
through public methods only.

Like in C++, a member method with the same name as the class name
is considered as a constructor. It is always public, even if it is specified
with ”private”. This constructor method is alway executed when an Tao
object is created. No destructor is required in Tao, since Tao can take care
of destroying an object when it is not used any more.

Note: so far in Tao, class can only inherit from one single parent class.
So far Tao only support single line inheritance, namely one class can has
at most one parent class. Unlike C++, no additional inheritance flags are
require in sub-classing. A sub-class can access the protected and public data
and methods in its parent classes.

class Base{

private

CHAPTER 10. OBJECT-ORIENTED PROGRAMMING IN TAO44

name,id;

routine priv(){}

protected d,e;

public f;

routine test(p){

f=p;

print("Printed by Base::test()\t",p,"\n");

return f;

}

routine func();

constructor:

routine Base(a,b){

name=a;

id=b;

}

}

routine Base::func(){

print("This method is defined outside of class body\n");

}

class Sub : Base{

public aa;

routine test(p){

print("Printed by Sub::test()\t",p,"\n");

}

constructor, similar to C++:

routine Sub(a,b,c):Base(c,a){

aa=a;

}

}

There is no feature such as polymorphism and virtual functions in Tao. Since
an Tao object always knows the exact class type from which it is created.
So when you use an object to access a data member or method member, it

CHAPTER 10. OBJECT-ORIENTED PROGRAMMING IN TAO45

always finds the correct one.

obj=Sub("s","dog",3);

a="Parameter";

obj.test(a);

gives:

Printed by Sub::test() Parameter

Sometimes one may need to known if an object is an instance of a particular
class, this can also be done with type comparison operators =?, !?.

if(obj =? Base){

print("obj is of Base type\n");

}else if(obj =? Sub){

print("obj is of Sub type\n");

}

Chapter 11

Namespacing & Importing
Modules

11.1 Namespacing in Tao

Another important feature of Tao is its flexible namespacing. It is mainly
used in dynamic importing of Tao modules, dynamic creating subroutines and
classes and other places which are not directly visible from users. What’s
more, the command line mode of interpretation can more easily be imple-
mented with this namespacing feature in the future.

In fact, the compilation of Tao scripts is associated with two names-
paces, one is the input namespace, the other output namespace. The input
namespace is used to resolve symbols (such as shared or external variables,
subroutines classes) which are not defined in the compiling scripts. And the
output namespace is used to store the variables, subroutines and classes de-
fined the compiling scripts. In each individually compiled piece of script, the
current namespace is represented by ”this” variable (Everything in Tao is a
variable or object, so is a namespace. A namespace is a constant variable.
), and its members can be accessed with operator ”::” or ”.” (They haven’t
differentiated yet, but they will in the future).

CHAPTER 11. NAMESPACING & IMPORTING MODULES 47

11.2 Importing of Tao Modules

To import classes and routines defined in another file, use import statement,

import modname : ”path/file”;

and access them by modname :: rout class() or modname.rout class().

import cluss:"./sample/class.tao";

Or: cluss=import("./sample/class.tao");

A namespace "cluss" is created.

import func:"./sample/function.tao";

A namespace "func" is created.

Accessing classes and routines in a namespace.

obj=cluss::klass();

obj.fun();

func::fun();

With the import statement, the modules are imported in compiling time.
If one want to import in running time, one can use function import().
import() can also take a second and third parameters which are the same
parameters as in compile() and eval() (See the next section).

11.3 Dynamic Creation Of Tao Routines and

Classes

To create routines or classes in running time, the internal function compile()
is required.

compile(scripts, nsIn, nsOut): compile a block of Tao scripts. It takes
3 parameters, and returns a namespace variable. The first parameter should
be a string of Tao scripts. The second should be the input namespace, it
should be used if the a dependency between the scripts to be compiled and

CHAPTER 11. NAMESPACING & IMPORTING MODULES 48

the variables, routines and classes defined in the input namespace. The third
is the output namespace, which should be used if one wants to use an existing
namespace to store newly compiled variables, routines and classes.

eval(scripts, nsIn, nsOut): evaluate a block of Tao scripts. It takes
the same parameters as compile(), but after compiling, it also execute the
compiled codes.

a = "a=1; b=\"2\"; print(a+b,\" \",b+a);";

eval(a);

Namespace together with compile() provide a possibility to create classes
and subroutines in running time.

class Base{

public:

routine test(){ print("base class\n"); }

}

b = "a dynamic subroutine";

a = "routine dynsub(b)

{ print(\"A dynamic subroutine.\n\",b,\"\n\"); }

print(\"This is compiled in running time.\n\n\");

dynsub(); ";

c = "class Sub : Base { public

routine test2(){ print(\"a dynamic class\n\"); } }";

"this" is the current default namespace.

Compile codes "a", and use "this" as input namespace

to resolve dependency.

ns1 = compile(a, this);

ns1" is returned as a new namespace storing

routines and classes defined in "a".

Run a routine defined in "a":

ns1::dynsub(b);

CHAPTER 11. NAMESPACING & IMPORTING MODULES 49

"main()" is the main routine of a compiled code.

ns1::main();

Use "this" as input namespace, "ns1" as output namespace.

And "ns1" is return, "ns2" becomes an alias of "ns1".

ns2 = compile(c, this, ns1);

Create an object of a class defined in "c":

d = ns2::Sub();

d.test();

Chapter 12

Extending Tao with C++

The power of Tao can be extended by writing C++ modules and loading,
using them in Tao scripts. An C++ module for Tao is simply a C++ library
with certain interface, through which tao interpreter can create an object of
a C++ class that is defined in the library and invoke its class methods.

The basic way to create C++ modules for Tao, is to subclass from Tao-
Plugin and reimplement some of the virtual functions, such as rtti() to en-
sure that one can know the exact type of an object in running time, newOb-
ject() to create an instance of user-defined plugin, runMethod() to run a
specific method. TaoPlugin is defined in header file taoPlugin.h.

class TaoPlugin : public TcBase

{

public:

TaoPlugin(){}

virtual ~TaoPlugin(){}

short type()const{ return TAO_PLUGIN; }

virtual short rtti()const{ return TAO_PLUGIN; }

virtual TaoPlugin* newObject(TcArray *param=0){

return new TaoPlugin();

}

virtual void runMethod(const char *funame,

TcArray *in=0,TcArray *out=0)

{

cout<<"TaoPlugin::runMethod() is not reimplemented.\n";

CHAPTER 12. EXTENDING TAO WITH C++ 51

}

virtual void print(ostream *out=0, bool reserved=0){};

};

Here TcBase is the base class for all C++ types. To pass parameters from
Tao scripts to C++ methods, Tao defined a set of C++ type corresponding
to each of the basic Tao data types as well as their conversions.

TcNumber <=> TaoNumber
TcString <=> TaoString
TcComplex <=> TaoComplex
TcArray <=> TaoArray
TcHash <=> TaoHash
TcByteArray <=> TaoByteArray
TcShortArray <=> TaoShortArray
TcIntArray <=> TaoIntArray
TcFloatArray <=> TaoFloatArray
TcDoubleArray <=> TaoDoubleArray
TcComplexArray <=> TaoCompArray

When a method is called by a C++ object in Tao scripts, Tao interpreter
invokes runMethod(), passing the method name as the first parameter
and two TcArray in and out as the second and third parameters. The
first TcArray in contains C++ types converted from Tao variables in the
parameter list of the method in Tao scripts. The second TcArray out is
passed to hold returned variables, which will be converted into Tao data
types.

As a simple example,

#include"stdio.h"

#include"taoPlugin.h"

// Use this macro defined in "taoPlugin.h"

// to do certain initialization.

INIT_TAO_PLUGIN;

class MyPlugin : public TaoPlugin{

// Use this macro to define a special constructor

// for plugin registration:

TAO_PLUGIN(MyPlugin);

CHAPTER 12. EXTENDING TAO WITH C++ 52

char *name;

public:

MyPlugin(){ name=0; }

// This function must be reimplemented to create

// your own plugin objects.

TaoPlugin* newObject(TcArray *param=0){

return (TaoPlugin*)new MyPlugin;

}

// This funtion must be reimplemented to invoke other

// methods or do the work you want. "funame" is the

// function name you want to use in Tao script.

// "in" is an array holding parameters passed in.

// "out" is an array to hold return variables

// which can be use in Tao scripts.

void runMethod(const char *funame,

TcArray *in=0, TcArray *out=0)

{

// Suppose all parameters are passed properly.

if(strcmp(funame,"setName")==0){

TcString *tstr=(TcString*)in->getElement(0);

char *chars=tstr->getChars();

name=(char*)realloc(name,

(strlen(chars)+1)*sizeof(char));

memcpy(name, chars,

(strlen(chars)+1)*sizeof(char));

}else if(strcmp(funame,"getName")==0){

TcString *tstr=new TcString;

tstr->setChars(name);

out->insert(tstr);

}else if(strcmp(funame,"reshapeArray")==0){

TcNumArray *array=(TcNumArray*)in->getElement(0);

TcIntArray *shape=(TcIntArray*)in->getElement(1);

// reshape() is a method define in TcNumArray

// to reshape a numeric array.

array->reshape(shape->getAsVector(), shape->size());

}else{

printf("Warning: method undefined!\n");

}

CHAPTER 12. EXTENDING TAO WITH C++ 53

}

};

// One instance must be declared to register you plugin

// with the name which you want to be used as class name

// in Tao scripts. Here the C++ class name is used.

MyPlugin plugin("MyPlugin");

Now if this C++ module is compiled into ”cppmod.so”(or ”cppmod.dll”),
you may do like this in you Tao scripts,

load CppMod:"./cppmod.so"; # or cppmod.dll

Or: CppMod=load("./cppmod.so");

obj = CppMod::MyPlugin();

obj.setName("this is my plugin");

name = obj.getName();

print("name returned by getName(): ", name, "\n");

print:

name returned by getName(): this is my plugin

array = [2][2][2]:1;

shape = [int 2, 4];

print("array before reshaping:\n");

print(array);

print:

array before reshaping:

row(0,0,:): 1 1

row(0,1,:): 1 1

row(1,0,:): 1 1

row(1,1,:): 1 1

obj.reshapeArray(array, shape);

print("array after reshaping:\n");

print(array);

print:

array after reshaping:

row(0,:): 1 1 1 1

row(1,:): 1 1 1 1

CHAPTER 12. EXTENDING TAO WITH C++ 54

Note:

"array" is modified in the C++ module.

The load statement loads the C++ modules in compiling time. If one want
to load in running time, one can use function load().

If TaoP lugin :: rtti() is reimplemented, it is also possible to check the
plugin type in Tao scripts with .? or about() and type comparison operators
=?, !?.

Note that, only the two header files taoCpptype.h and taoPlugin.h
are needed to build a C++ module for Tao, no additional library is required
for linking !

For more detailed documentation for the C++ type for Tao, please go
to:

Chapter 13

Miscellaneous Issues and
Functions

13.1 Other Built-in Functions

about(exprs): return the type and address of an object returned by exprs
as a string.

system(command): execute a system command represented as a
string.

time(): get the time since the Epoch (00:00:00 UTC, January 1, 1970),
measured in seconds.

astime(seconds, unitmax): return the time of seconds represented in
unitmax, which must be a string and be one of ”day”, ”hour” or ”minute”,
and the units smaller than unitmax. It returns a hash with time units as
keys.

a = 10000;

b = astime(a, "hour");

b={ "hours"=>2, "minutes"=>46, "seconds"=>40 }

asctime(seconds): represent seconds, elapsed since 00:00:00 on Jan-
uary 1, 1970, Coordinated Universal Time (UTC), as calendar time. It re-
turns a hash with year, month and day etc as keys, which are similar to the

CHAPTER 13. MISCELLANEOUS ISSUES AND FUNCTIONS 56

members in the C structure tm define in time.h. However the ranges of the
values are slightly different, namely, the ”month” ranges from 1 to 12, and
the ”yday” ranges from 1 to 366.

a = time();

b = asctime(a);

b={"day"=>23,"hour"=>16,"isdst"=>0,"minute"=>40,"month"=>4,

"second"=>4,"wday"=>6,"yday"=>113,"year"=>2005}

